Experiment Part

Compounds G1-Br,¹¹ G2-Br,¹¹ **5**,⁴ **6**,⁴ and **10**⁴ were prepared according to literature procedures. All the chemicals were purchased from Aldrich or Acros and used without further purification except for Pd(PPh₃)₄ which was recrystalized before use. Solvents were worked up according to the standard procedure. All reactions were carried out under nitrogen. The ¹H-NMR spectra were recorded on Bruker 270 or 500 MHz spectrometers. The molecular weight determinations were done using a Thermo Separation Products set up with three DVB-mixed (DVB = divinylbenzene) bead columns, a H520B viscometer detector, and a Wyatt Dawn DSP laser Photometer, coupled with an Optilab 903 interferometric refractometer. Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) was used with trans-3-indoleacrylic acid (20 mg/ml in THF) as matrix.

General Procedure for Ether Synthesis Using Phenol and Benzylic

Bromide. A mixture of phenol, benzylic bromide, K₂CO₃, and acetone was refluxed for 24h. The solvent was evaporated to dryness, the residue partioned between water and CH₂Cl₂. The organic layer was separated, the aqueous one extracted with CH₂Cl₂, the combined organic layer dried over MgSO₄, and evaporated to dryness. The crude product was purified by silica gel chromatagraphy. Some lower molar mass compounds were recrystallized, and the higher molar mass compounds were freeze-dried after column separation.

General Procedure for Conversion of the Benzylic Alcohol into the

Corresponding Bromide. To a stirred solution of the alcohol and CBr₄ in minimal THF, was added a solution of PPh₃ in THF at 0 °C. After addition, the mixture was allowed to reach room temperature and stirred for 2 h. Then water was added, and the mixture extracted 3 times with CH₂Cl₂. The combined organic layer was dried over MgSO₄, and evaporated to dryness. The crude product was purified by silica gel column chromatography.

General Procedure for the Reduction of Carboxylic Ester to Alcohol with LiBH₄.

A solution of LiBH₄ in THF was refluxed for 1 h, then cooled to room temperature, and a solution of dendritic ester (**2a**, **3a**, and **4a**) in THF was added dropwise. After addition the mixture was refluxed for further 6 h. Solvent was removed with rotary evaporator, the residue was acidified with dilute HCI, and the resulting solid extracted with CH₂Cl₂ (3 x 100 ml). The combined organic layer was dried over MgSO₄ and evaporated to dryness. The crude product was purified by silica gel column chromatography.

General Procedure for Suzuki Cross-Coupling Reaction. A mixture of the respective dendrimer (**11a**, **11b**, and **11c**), *p-tert*-butylbenzeneboronic acid, NaHCO₃, H₂O, and THF was carefully de-aired before Pd(PPh₃)₄ was added. The mixture was then refluxed for 5 d with stirring. CH₂Cl₂ (200 ml) was then added, the organic layer separated, and dried over MgSO₄. After removal of the solvent, the residue was purified by silica gel chromatography, and then freeze-dried from benzene.

Methyl-4-bromo-3,5-dihydroxybenzoate (1) A mixture of 4-bromo-3,5dihydroxybenzoic acid (18.9 g, 81.1 mmol), methanol (200 ml), and H₂SO₄ (5 ml) was refluxed for 16 h. The methanol was removed under reduced pressure, and the residue partioned between water (200 ml) and diethylether (400 ml). The organic layer was washed with water (200 ml), saturated NaHCO₃ solution (30 ml), water (2 x 200 ml), dried over Na₂SO₄ and evaporated to dryness. The crude product was recrystallized from methanol. Yield 15.0 g (75%). Calc. for C₈H₇BrO₄: C, 38.90; H, 2.86. Found C, 38.81; H, 2.77. ¹H NMR (270 MHz, DMSO-[d₆]) 10.47 (s, 2H), 7.00 (s, 2H), 3.79 (s, 3H). ¹³C NMR (68 MHz, DMSO-[d₆]) 165.8, 155.5, 129.2, 107.0, 103.4, 52.2.

Methyl-3,5-bis(benzyloxy)-4-bromobenzoate (2a). Benzylbromide (18.2 g, 0.106 mol), 1 (11.1 g, 0.045 mol), K₂CO₃ (15 g, 0.11 mol), and acetone (300 ml) were used. Crude product was purified by silica gel column chromatography using CH₂Cl₂/hexane (1 : 1) increasing to CH₂Cl₂ as eluent. Yield 16.8 g (87%). Calc. for C₂₂H₁₉BrO₄: C, 61.84; H, 4.48. Found: C, 61.64; H, 4.33. ¹H NMR (270 MHz, CDCl₃) 7.51-7.31 (m, 12H), 5.20 (s, 4H), 3.90 (s, 3H); ¹³C NMR (68 MHz, CDCl₃) 166.3, 156.3, 136.1, 130.0, 128.6, 128.0, 127.1, 108.4, 107.3, 71.1, 52.4.

Methyl-3,5-bis[3,5-bis(benzyloxy)benzyloxy]-4-bromobenzoate (3a). Fréchet G1 bromide (1.95 g, 5.09 mmol), 1 (0.62 g, 2.554 mmol), K₂CO₃ (1.0 g, 7.3 mmol), and acetone (150 ml) were used. Crude product was purified by chromatography on silica gel column using CH_2Cl_2 as eluent. Yield 1.6 g (74%). Calc. for $C_{50}H_{43}BrO_8$: C, 70.50; H, 5.09. Found: C, 70.22; H, 4.91. ¹H NMR (270 MHz, CDCl₃) 7.42-7.27 (m, 22H), 6.75 (d, 4H), 6.56 (t, 2H), 5.13 (s, 4H), 5.04 (s, 8H), 3.89 (s, 3H); ¹³C NMR (68 MHz, CDCl₃) 166.2, 160.2, 156.1, 138.6, 136.8, 130.1, 128.6, 128.0, 127.5, 107.3, 105.8, 101.8, 70.8, 70.1, 52.4.

Methyl 3,5-bis{3,5-bis[3,5-bis(benzyloxy)benzyloxy]benzyloxy}-4-

bromobenzoate (4a). Fréchet G2 bromide (4.00 g, 4.96 mmol), **1** (0.60 g, 2.42 mmol), K_2CO_3 (1.4 g, 10.1 mmol), and acetone (200 ml) were used. Crude product was purified by chromatography on silica gel column using CH₂Cl₂ as eluent. Yield 3.8 g (92%). Calc. for C₁₀₆H₉₁BrO₁₆: C, 74.86; H, 5.39. Found: C, 74.53; H 5.38. ¹H NMR (270 MHz, CDCl₃) 7.41-7.27 (m, 42H), 6.74 (d. 2H), 6.68 (d, 4H), 6.56 (two sets of sigals incoperated into two peaks, 6H), 5.11 (s, 4H), 5.01 (s, 16H), 4.98 (s, 8H), 2.73 (s, 3H); ¹³C NMR (68 MHz, CDCl₃) 166.2, 160.1, 160.0, 156.1, 139.2, 138.6, 136.8, 130.1, 128.5, 127.9, 127.5, 108.3, 107.3, 106.3, 105.9, 101.8, 101.6, 70.8, 70.1, 70.0, 52.4.

3,5-Bis(benzyloxy)-4-bromobenzylalcohol (2b). 2a (8.0 g, 18.7 mmol), LiBH₄ (1.8 g, 84.2 mmol), and THF (150 ml) were used. CH₂Cl₂/methanol (10:1) was used as eluent. Yield 7.0 g (94%). ¹H NMR (270 MHz, CDCl₃) 7.49-7.27 (m, 10H), 6.60 (s, 2H), 5.13 (s, 2H), 4.55 (s, 2H); ¹³C NMR (68 MHz, CDCl₃) 156.3, 141.6, 136.5, 128.5, 127.9, 126.9, 104.8, 70.8, 64.9. **3,5-Bis[3,5-bis(benzyloxy)benzyloxy]-4-bromobenzylalcohol (3b). 3a** (1.5 g, 1.76 mmol), LiBH₄ (0.17 g, 7.92 mmol), THF (100 ml) were used. CH₂Cl₂/methanol (10:1) was used as eluent. Yield 1.05 g (73%). Calc. for $C_{49}H_{43}BrO_7$: C, 71.44; H, 5.26. Found: C, 70.03; H, 5.27. ¹H NMR (270

MHz, CDCl₃) 7.43-7.29 (m, 20H), 6.73 (d, 4H), 6.57 (s, 2H), 6.55 (t, 2H), 5.07 (s, 4H), 5.03 (s, 8H), 4.54 (d, 2H); ¹³C NMR (68 MHz, CDCl₃) 160.1, 156.2, 141.6, 139.0, 136.8, 128.5, 127.9, 127.5, 105.7, 104.8, 101.6, 70.6, 70.0, 64.9.

3,5-Bis{3,5-bis[3,5-bis(benzyloxy)benzyloxy]benzyloxy}-4-

bromobenzylalcohol (4b). 4a (3.66 g, 2.15 mmol), LiBH₄ (0.35 g, 15.9 mmol), THF (150 mmol) were used. CH₂Cl₂ was used as eluent. Yield 2.5 g (70%). ¹H NMR (500 MHz, CDCl₃) 7.40-7.26 (m, 40H), 6.70 (s, 4H), 6.65 (s, 8H), 6.54-6.50 (three sets of signals incoperated together, 8H), 5.04 (s, 4H), 4.99 (s, 16H), 4.95 (s, 8H), 4.50 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) 160.1, 159.9, 156.1, 141.7, 139.2, 139.0, 136.7, 128.5, 128.0, 127.6,

 $106.2,\,105.6,\,104.8,\,101.6,\,101.5,\,101.1,\,70.6,\,70.0,\,69.9,\,62.8,\,52.4.$

3,5-Bis(benzyloxy)-4-bromobenzylbromide (2c) 2b (6.01 g, 15.0 mmol), CBr₄ (7.48 g, 22.54 mmol), PPh₃ (5.91 g, 22.54 mmol) were used. CH₂Cl₂ was used as eluent. Crude product was recrystallized from CH₂Cl₂/Hexane (1:4). Yield 5.1 g (73%). ¹H NMR (250 MHz, CDCl₃) 7.50-7.31 (m, 10H),

6.65 (s, 2H), 5.15 (s, 4H), 4.38 (s, 2H). ¹³C NMR (68 MHz, CDCl₃) 156.4,

138.0, 136.3, 128.6, 128.0, 127.0, 107.3, 71.0, 33.3.

3,5-Bis[3,5-bis(benzyloxy)benzyloxy]-4-bromobenzylbromide (3c). 3b (1.00 g, 1.22 mmol), CBr₄ (0.65 g, 1.95 mmol), PPh₃ (0.51 g, 1.95 mmol) were used. CH₂Cl₂/Hexane (1:2) increasing to CH₂Cl₂ was used as eluent. Yield 0.78 g (72%). Calc. for C₄₉H₄₃BrO₇: C, 66.38; H 4.77. Found: C, 66.38; H, 4.89. ¹H NMR (250 MHz, CDCl₃) 7.43-7.30 (m, 20H), 6.73 (d, 4H), 6.59 (s, 2H), 6.57 (t, 2H), 5.08 (s, 4H), 5.04 (s, 8H), 4.35 (s, 2H). ¹³C

NMR (68 MHz, CDCl₃) 160.1, 156.2, 138.7, 138.0, 136.8, 128.6, 128.0, 127.5, 107.3, 105.8, 101.7, 70.8, 70.0. 33.3.

3,5-Bis{3,5-bis[3,5-bis(benzyloxy)benzyloxy]benzyloxy}-4-

bromobenzylbromide (4c). 4b (2.2 g, 1.32 mmol), CBr₄ (0.88 g, 2.65 mmol), PPh₃ (0.70 g, 2.65 mmol) were used. CH₂Cl₂/Hexane (1:2) increasing to CH₂Cl₂ was used as eluent. Yield 1.6 g (70%). Calc. for C₁₀₅H₉₀Br₂O₁₄: C, 72.66; H 5.23. Found: C, 72.30; H, 5.09. ¹H NMR (500 MHz, CDCl₃) 7.42 -7.30 (m, 40H), 6.73 (d, 4H), 6.69 (d, 8H), 6.60 (s, 2H), 6.57 (two sets of signals incoperated together, 6H), 5.05 (s, 4H), 5.01 (s, 16H), 4.98 (s, 8H), 4.35 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) 160.1, 159.9, 156.1, 139.2, 138.7, 138.0, 136.6, 128.5, 127.9, 127.7, 127.5, 127.3, 107.2, 106.2, 105.7, 102.6, 101.6, 101.4, 70.7, 70.0, 69.9, 33.3.

3-[3,5-Bis(benzyloxy)-4-bromobenzyloxy]-5-[3,5-

bis(benzyloxy)benzyloxy]benzyl

alcohol (7a). 5 (3.90 g, 8.81 mmol), **2c** (4.07 g, 8.81 mmol), K₂CO₃ (1.82 g, 13.2 mmol), and acetone (250 ml) were used. CH₂Cl₂ was used as eluent. Yield 7.0 g (96%). Calc. for C₄₉H₄₃BrO₇: C, 71.44; H, 5.26. Found: C, 71.21; H, 5.37. ¹H NMR (250 MHz, CDCl₃) 7.49-7.30 (m, 20H), 6.68 (two sets of signals overlapping, 4H), 6.60-6.49 (three sets of signals overlapping, 4H), 5.01 (s, 4H), 4.95 (s, 2H), 4.90 (s, 2H), 4.59 (s, 2H). ¹³C NMR (68 MHz, CDCl₃) 160.1, 159.9, 159.7, 156.3, 143.5, 139.1, 137.4, 136.6, 136.4, 128.5, 128.0, 127.8, 127.5, 126.9, 106.3, 105.7, 105.4, 101.4, 101.2, 70.8, 70.0, 69.8, 69.6, 65.0.

3-{3,5-Bis[3,5-bis(benzyloxy)benzyloxy]-4-bromobenzyloxy}-5-{3,5bis[3,5-bis(benzyloxy)benzyloxy]benzyloxy}benzylalcohol (8a). 3c

(0.68 g, 0.77 mmol), **6** (0.67 g, 0.77 mmol), K₂CO₃ (0.91 g, 6.50 mmol), and acetone (200 ml) were used. CH₂Cl₂ was used as eluent. Yield 1.03 g (80%). Calc. for C₁₀₅H₉₁BrO₁₅: C, 75.39; H, 5.48. Found: C, 75.32; H, 5.74. ¹H NMR (250 MHz, CDCl₃) 7.41-7.29 (m, 40H), 6.72 (d, 4H), 6.65 (d, 4H), 6.64-6.62 (two sets of signals overlapping, 4H), 6.56-6.53 (four sets of signals overlapping, 7H), 5.52 (t, 1H), 5.06 (s, 4H), 5.01 (s, 8H), 4.99 (s, 8H), 4.83 (s, 6H), 4.87 (s, 2H), 4.53 (s, 2H). ¹³C NMR (68 MHz, CDCl₃) 160.1, 160.0, 159.7, 156.2, 143.6, 139.2, 139.0, 137.5, 136.7, 128.5, 127.9, 127.5, 106.3, 105.7, 105.5, 101.6, 101.5, 101.2, 70.7, 70.0, 69.9, 69.7, 65.0.

3-[3,5-Bis(benzyloxy)-4-bromobenzyloxy]-5-[3,5-

bis(benzyloxy)benzyloxy]benzyl

bromide (7b). 7a (4.33 g, 5.26 mmol), CBr₄ (2.61 g, 7.88 mmol), PPh₃ (2.07 g, 7.88 mmol) were used. CH₂Cl₂/Hexane (1:2) increasing to CH₂Cl₂ was used as eluent. Yield 4.6 g (99%). Calc. for C₄₉H₄₂Br₂O₆: C, 66.38; H, 4.77. Found: C, 66.29; H, 4.84. ¹H NMR (270 MHz, CDCl₃) 7.49-7.30 (m, 20H), 6.66 (two sets of signals overlapping, 4H), 6.62 (t, 1H), 6.58 (d, 2H), 6.47 (t, 1H), 5.15 (s, 4H), 5.02 (s, 4H), 4.95(s, 2H), 4.91 (s, 2H), 4.39 (s, 2H). ¹³C NMR (68 MHz, CDCl₃) 160.2, 159.9, 159.7, 156.4, 139.8, 138.9, 137.2, 136.7, 136.4, 128.5, 128.0, 127.9, 127.5, 127.0, 108.3, 108.2, 106.4, 105.5, 102.2, 101.5, 70.9, 70.1, 70.0, 69.8, 33.5.

3-{3,5-Bis[3,5-bis(benzyloxy)benzyloxy]-4-bromo-benzyloxy}-5-3-{3,5bis[3,5-bis(benzyloxy)benzyloxy]benzyloxy}benzylbromide (8b). 8a

(1.00 g, 0.60 mmo), CBr₄ (2.61 g, 7.88 mmol), PPh₃ (2.07 g, 7.88 mmol)

were used. CH_2CI_2 /Hexane (1:2) increasing to CH_2CI_2 was used as eluent.

Yield 0.24 g (23%). Calc. for C₁₀₅H₉₀Br₂O₁₄: C. 72.66; H, 5.23. Found: C,

72.28; H, 5.16. ¹H NMR (270 MHz, CDCl₃) 7.39-7.27 (m, 40H), 6.72 (d,

4H), 6.64 (d, 4H), 6.61-6.53 (six sets of signals overlapping, 11H), 6.52 (t,

1H), 5.07 (s, 4H), 5.01 (s, 8H), 4.99 (s, 8H), 4.93 (s, 4H), 4.92 (s, 2H), 4.87

(s, 2H), 4.33 (s, 2H). ¹³C NMR (68 MHz, CDCl₃) 160.2, 160.1, 160.0,

156.5, 139.8, 139.2, 139.0, 137.4, 136.5, 128.6, 128.0, 127.5, 127.0,

108.2, 106.4, 105.6, 102.2, 101.6, 71.0, 70.1, 70.0, 69.8, 33.5.

3-{3-[3,5-Bis(benzyloxy)-4-bromobenzyloxy]-5-[3,5-bis(benzyloxy)-

benzyloxy]benzyloxy}-5-{3,5-bis[3,5-

bis(benzyloxy)benzyloxy]benzyloxy}

benzylbenzylalcohol (9a). 7b (1.31 g, 1.48 mmol), 6 (1.28 g, 1.48 mmol), K₂CO₃ (1.00 g, 7.25 mmol), and acetone (200 ml) were used. CH₂Cl₂ was used as eluent. Yield 1.91 g (77%). Calc. for C₁₀₅H₉₁BrO₁₅: C, 75.39; H, 5.48. Found: C, 75.34; H 5.69. ¹H NMR (500 MHz, CDCl₃) 7.46-7.28 (m, 40H), 6.65-6.50 (11 sets of signals overlapping, 20H), 5.11 (s, 4H), 4.99 (two sets of signals overlapping, 12H), 4.93 (four sets of signals overlapping, 10H), 4.89 (s, 2H), 4.55 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) 160.08, 159.96, 159.91, 159.76, 156.34, 139.34, 139.21, 139.11, 139.09, 137.36, 136.65, 136.41, 129.20, 128.55, 128.01, 127.63, 127.56, 127.48, 127.07, 126.90, 106.90, 106.42, 106.18, 106.04, 105.67, 105.54, 105.31, 101.99, 101.76, 101.54, 101.35, 101.18, 101.03, 70.97, 70.83, 70.70, 70.19, 70.02, 69.89, 69.73, 65.12.

3-{3-[3,5-Bis(benzyloxy)-4-bromobenzyloxy]-5-[3,5-bis(benzyloxy)benzyloxy]benzyloxy}-5-{3,5-bis[3,5-

bis(benzyloxy)benzyloxy]benzyloxy}

benzylbenzylbromide (9b). 9a (1.20 g, 0.72 mmol), CBr₄ (0.38 g, 1.15 mmol), PPh₃ (0.30 g, 1.15 mmol) were used. $CH_2Cl_2/Hexane$ (1:2) increasing to CH_2Cl_2 was used as eluent. Yield 0.54 g (43%). Calc. for C₁₀₅H₉₀Br₂O₁₄: C, 72.66; H, 5.23. Found: C, 72.33; H, 5.16. ¹H NMR (270MHz, CDCl₃) 7.46-7.27 (m, 40H), 6.66-6.49 (11 sets of signals overlapping, 20H), 5.12 (s, 4H), 5.00 (two sets of signals incoperated into one peak, 12H), 4.94 (two sets of signals incoperated into one peak, 6H), 4.92 (two sets of signals incoperated into one peak, 4H), 4.90 (s, 2H), 4.36 (s, 2H). ¹³C NMR (68MHz, CDCl₃) 160.2, 160.1, 159.9, 156.4, 139.8, 139.1, 139.0, 137.4, 136.7, 136.5, 128.6, 128.0, 127.9, 127.5, 127.0, 108.2, 106.4, 105.6, 102.2, 101.6, 70.9, 70.1, 70.0, 69.8, 33.6. **Dendrimer 11a. 9b** (75 mg, 0.043 mmol), **10** (150 mg, 0.043 mmol), Cs_2CO_3 (0.7 g, 2.2 mmol), and acetone (100 ml) were used. CH_2Cl_2 was used as eluent. Yield 0.18 g (81%). Calc. for C₃₃₅H₂₈₇BrO₄₅: C, 78.70; H, 5.66. Found: C, 78.03; H, 5.63. ¹H NMR (500 MHz, CDCl₃) 7.42-7.27 (m, 120H), 6.88 (AB system, 12H), 6.65-6.45 (complesive shape, 62H), 5.09 (s, 4H), 4.95 (two sets of signals overlapping, 42H), 4.90-4.85 (six sets of signals overlapping, 44H), 2.03 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) 160.1, 160.0, 156.7, 156.4, 142.0, 139.5, 139.2, 137.4, 136.7, 136.4, 129.6,

128.5, 128.0, 127.9, 127.5, 127.0, 113.9, 106.4, 106.3, 105.5, 101.5, 70.8, 70.0, 69.9. MALDI-TOF: Calc. for C₃₃₅H₂₈₇BrO₄₅: 5112.81; Found: 5136.1 (M + Na⁺), 5151.9 (M + K⁺).

Dendrimer 11b. 8b (110 mg, 0.064 mmol), 10 (220 mg, 0.64 mmol), Cs₂CO₃ (0.8 g, 2.5 mmol), and acetone (100 ml) were used. CH₂Cl₂ was used as eluent. Yield 0.19 g (58%). Calc. for C₃₃₅H₂₈₇BrO₄₅: C, 78.70; H, 5.66. Found: C, 77.92; H, 5.51. ¹H NMR (500 MHz, CDCl₃) 7.39-7.25 (m, 120H), 6.88 (AB system, 12H), 6.79-6.51 (complesive shape, 62H), 5.03 (s, 4H), 4.98-4.85 (seven sets of signals overlapping, 86H), 2.03 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) 163.3, 160.1, 160.0, 159.8, 156.7, 156.2, 142.0, 139.6, 139.5, 139.1, 138.9, 137.4, 136.6, 129.6, 128.5, 128.0, 127.5, 113.9, 110.6, 106.3, 105.6, 101.5, 88.3, 82.4, 70.6, 70.0, 69.9, 50.6, 30.7. MALDI-TOF: Calc. for C₃₃₅H₂₈₇BrO₄₅: 5112.81; Found: 5136.0 (M + Na⁺), 5151.9 (M + K⁺).

Dendrimer 11c. 4c (275 mg, 0.159 mmol), 10 (548 mg, 0.159 mmol), Cs₂CO₃ (1.0 g, 3.1 mmol), and acetone (150 ml) were used. CH₂Cl₂ was used as eluent. Yield 0.68 g (81%). Calc. for C₃₃₅H₂₈₇BrO₄₅: C, 78.70; H, 5.66. Found: C, 78.20; H, 5.70. ¹H NMR (500 MHz, CDCl₃) 7.40-7.27 (m, 120H), 6.88 (two sets of signals overlapping, 12H), 6.72-6.51 (62H), 5.03 (s, 4H), 4.96-4.82 (seven sets of signals overlapping, 86H), ¹³C NMR (125 MHz, CDCl₃) 160.05, 160.0, 156.66, 156.42, 156.19, 141.90, 139.46, 139.16, 139.09, 138.90, 136.64, 130.14, 129.45, 129.15, 128.63, 128.53, 128.43, 127.95, 127.64, 127.54, 127.43, 126.89, 114.13, 113.75, 106.89, 106.42, 106.09, 105.55, 102.02, 101.55, 101.32, 100.87, 70.62, 70.23, 70.14, 69.96, 69.86, 69.69, 50.56. MALDI-TOF: Calc. for C₃₃₅H₂₈₇BrO₄₅: 5112.81; Found: 5136.1 (M+Na⁺), 5152.1 (M + K⁺).

Dendrimer 11d. 11a (125 mg, 0.0245 mmol), 12 (35 mg, 0.197 mmol), NaHCO₃ (1.0 g), H₂O (10 ml), THF (15 ml), and Pd(PPh₃)₄ (2.0 mg) were used. CH₂Cl₂/Hexane (1:1) increasing to CH₂Cl₂ was used as eluent. Yield: 120 mg (95%). Calc. for C₃₄₅H₃₀₀O₄₅: C, 80.21; H, 5.85. Found: C, 79.75; H, 5.89. ¹H NMR (500 MHz, CDCl₃) 7.40-7.10 (complex peaks, 124H), 6.88 (AB system, 12H), 6.72 (s, 2H), 6.66-6.49 (20H), 4.96-4.87 (45H), 2.03 (s, 3H), 1.34 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) 160.1, 160.0, 156.9, 156.7, 139.1, 137.2, 136.7, 130.6, 129.6, 128.5, 128.2, 128.0, 127.5, 127.4, 126.6, 124.4, 113.9, 106.4, 106.3, 106.1, 101.5, 70.5, 70.0, 69.9, 69.8, 31.4. MALDI-TOF: Calc. for C₃₄₅H₃₀₀O₄₅: 5166.12; Found: 5189.1 (M+Na⁺), 5205.0 (M + K⁺).

Dendrimer 11e. 11b (120.2 mg, 0.024 mmol), 12 (33 mg, 0.185 mmol), NaHCO₃ (0.6 g), H₂O (10 ml), THF (15 ml), and Pd(PPh₃)₄ (3.0 mg) were used. CH₂Cl₂/Hexane (1:1) increasing to CH₂Cl₂ was used as eluent. Yield: 0.12 g (97%). Calc. for C₃₄₅H₃₀₀O₄₅: C, 80.21; H, 5.85. Found: C, 79.62; H, 5.95. ¹H NMR (500 MHz, CDCl₃) 7.40-7.22 (124H), 6.86 (two AB systems overlappingr, 12H), 6.71 (s, 2H), 6.63-6.45 (20H), 4.95-4.86 (90H). 2.03 (s, 3H), 1.15 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) 160.07, 159.98, 159.88, 156.78, 156.69, 139.67, 139.12, 136.70, 136.67, 130.69, 129.60, 128.54, 128.50, 127.97, 127.94, 127.62, 127.54, 124.43, 113.92, 106.38, 106.30, 105.69, 105.18, 101.48, 101.12, 69.99, 69.91, 31.24. MALDI-TOF: Calc. for C₃₄₅H₃₀₀O₄₅: 5166.12; Found: 5189.6 (M+Na⁺), 5205.4 (M + K⁺).

Dendrimer 11f. 11c (335 mg, 0.066 mmol), **12** (66 mg, 0.185 mmol), NaHCO₃ (0.6 g), H₂O (10 ml), THF (15 ml), and Pd(PPh₃)₄ (1.6 mg) were used. CH₂Cl₂/Hexane (1:1) increasing to CH₂Cl₂ was used as eluent. Yield: 0.30 g, (88%). Calc. for C₃₄₅H₃₀₀O₄₅: C, 80.21; H, 5.85. Found: C, 79.71; H, 6.01. ¹H NMR (500 MHz, CDCl₃) 7.39-7.27 (m, 124H), 6.88 (two AB systems incorperated together, 12H), 6.72 (s, 2H), 6.63-6.44 (20H), 4.95-4.81 (90H), 2.05 (s, 3H), 1.15 (s, 9H). ¹³C NMR (125MHz, CDCl₃) 160.07, 160.04, 159.97, 159.78, 156.77, 156.68, 141.98, 139.70, 139.48, 139.12, 136.67, 130.71, 129.60, 128.54, 128.53, 128.37, 127.96, 127.53, 127.51, 124.44, 113.93, 106.39, 106.28, 105.80, 105.23, 101.47, 101.17, 70.14, 69.99, 69.97, 69.89, 69.83, 50.59, 31.27. MALDI-TOF: Calc. for C₃₄₅H₃₀₀O₄₅: 5166.12; Found: 5189.1 (M + Na⁺), 5205.3 (M + K⁺).